- 1 (i) Starting with an equilateral triangle, prove that $\cos 30^\circ = \frac{\sqrt{3}}{2}$. [2]
 - (ii) Solve the equation $2\sin\theta = -1$ for $0 \le \theta \le 2\pi$, giving your answers in terms of π . [3]
- 2 Use an isosceles right-angled triangle to show that $\cos 45^\circ = \frac{1}{\sqrt{2}}$. [2]
- 3 (i) On the same axes, sketch the graphs of $y = \cos x$ and $y = \cos 2x$ for values of x from 0 to 2π . [3]
 - (ii) Describe the transformation which maps the graph of $y = \cos x$ onto the graph of $y = 3 \cos x$. [2]
- 4 θ is an acute angle and $\sin \theta = \frac{1}{4}$. Find the exact value of $\tan \theta$. [3]
- 5 (i) Sketch the graph of $y = \cos x$ for $0^{\circ} \le x \le 360^{\circ}$. On the same axes, sketch the graph of $y = \cos 2x$ for $0^{\circ} \le x \le 360^{\circ}$. Label each graph clearly. [3]
 - (ii) Solve the equation $\cos 2x = 0.5$ for $0^{\circ} \le x \le 360^{\circ}$. [2]

- 6 (i) Sketch the graph of $y = \sin \theta$ for $0 \le \theta \le 2\pi$. [2]
 - (ii) Solve the equation $2\sin\theta = -1$ for $0 \le \theta \le 2\pi$. Give your answers in the form $k\pi$. [3]

- 7 Sketch the curve $y = \sin x$ for $0^{\circ} \le x \le 360^{\circ}$. Solve the equation $\sin x = -0.68$ for $0^{\circ} \le x \le 360^{\circ}$. [4]
- 8 (i) Sketch the graph of $y = \tan x$ for $0^\circ \le x \le 360^\circ$. [2]
 - (ii) Solve the equation $4\sin x = 3\cos x$ for $0^\circ \le x \le 360^\circ$. [3]
- 9 Sketch the graph of $y = \sin x$ for $0^{\circ} \le x \le 360^{\circ}$. Solve the equation $\sin x = -0.2$ for $0^{\circ} \le x \le 360^{\circ}$. [4]