1
(i) Starting with an equilateral triangle, prove that $\cos 30^{\circ}=\frac{\sqrt{3}}{2}$.
(ii) Solve the equation $2 \sin \theta=-1$ for $0 \leqslant \theta \leqslant 2 \pi$, giving your answers in terms of π.

2 Use an isosceles right-angled triangle to show that $\cos 45^{\circ}=\frac{1}{\sqrt{2}}$.
(i) On the same axes, sketch the graphs of $y=\cos x$ and $y=\cos 2 x$ for values of x from 0 to 2π.
(ii) Describe the transformation which maps the graph of $y=\cos x$ onto the graph of $y=3 \cos x$.
4θ is an acute angle and $\sin \theta=\frac{1}{4}$. Find the exact value of $\tan \theta$.

5 (i) Sketch the graph of $y=\cos x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.
On the same axes, sketch the graph of $y=\cos 2 x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$. Label each graph clearly.
(ii) Solve the equation $\cos 2 x=0.5$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

6 (i) Sketch the graph of $y=\sin \theta$ for $0 \leqslant \theta \leqslant 2 \pi$.
(ii) Solve the equation $2 \sin \theta=-1$ for $0 \leqslant \theta \leqslant 2 \pi$. Give your answers in the form $k \pi$.

7 Sketch the curve $y=\sin x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.
Solve the equation $\sin x=-0.68$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

8 (i) Sketch the graph of $y=\tan x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.
(ii) Solve the equation $4 \sin x=3 \cos x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

9 Sketch the graph of $y=\sin x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$. Solve the equation $\sin x=-0.2$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

